Structure and mechanism of the farnesyl diphosphate synthase from Trypanosoma cruzi: implications for drug design.
نویسندگان
چکیده
Typanosoma cruzi, the causative agent of Chagas disease, has recently been shown to be sensitive to the action of the bisphosphonates currently used in bone resorption therapy. These compounds target the mevalonate pathway by inhibiting farnesyl diphosphate synthase (farnesyl pyrophosphate synthase, FPPS), the enzyme that condenses the diphosphates of C5 alcohols (isopentenyl and dimethylallyl) to form C10 and C15 diphosphates (geranyl and farnesyl). The structures of the T. cruzi FPPS (TcFPPS) alone and in two complexes with substrates and inhibitors reveal that following binding of the two substrates and three Mg2+ ions, the enzyme undergoes a conformational change consisting of a hinge-like closure of the binding site. In this conformation, it would be possible for the enzyme to bind a bisphosphonate inhibitor that spans the sites usually occupied by dimethylallyl diphosphate (DMAPP) and the homoallyl moiety of isopentenyl diphosphate. This observation may lead to the design of new, more potent anti-trypanosomal bisphosphonates, because existing FPPS inhibitors occupy only the DMAPP site. In addition, the structures provide an important mechanistic insight: after its formation, geranyl diphosphate can swing without leaving the enzyme, from the product site to the substrate site to participate in the synthesis of farnesyl diphosphate.
منابع مشابه
Binding of nitrogen-containing bisphosphonates (N-BPs) to the Trypanosoma cruzi farnesyl diphosphate synthase homodimer.
Bisphosphonates (BPs) are a class of compounds that have been used extensively in the treatment of osteoporosis and malignancy-related hypercalcemia. Some of these compounds act through inhibition of farnesyl diphosphate synthase (FPPS), a key enzyme in the synthesis of isoprenoids. Recently, nitrogen-containing bisphosphonates (N-BPs) used in bone resorption therapy have been shown to be activ...
متن کاملCrystallization and preliminary X-ray diffraction study of the farnesyl diphosphate synthase from Trypanosoma brucei.
Farnesyl diphosphate synthase (FPPS) catalyses the formation of farnesyl diphosphate from dimethylallyl diphosphate and isopentenyl diphosphate and is an RNAi-validated drug target in Trypanosoma brucei, the causative agent of African sleeping sickness. A T. brucei FPPS (390 amino acids) has been expressed in Escherichia coli and the recombinant protein has been crystallized in the absence and ...
متن کامل2-alkylaminoethyl-1,1-bisphosphonic acids are potent inhibitors of the enzymatic activity of Trypanosoma cruzi squalene synthase.
As part of our efforts aimed at searching for new antiparasitic agents, the effect of representative 2-alkylaminoethyl-1,1-bisphosphonic acids on Trypanosoma cruzi squalene synthase (TcSQS) was investigated. These compounds had proven to be potent inhibitors of T. cruzi. This cellular activity had been associated with an inhibition of the enzymatic activity of T. cruzi farnesyl diphosphate synt...
متن کاملBisphosphonates are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase.
We report the cloning and sequencing of a gene encoding the farnesyl pyrophosphate synthase of Trypanosoma cruzi. The protein (T. cruzi farnesyl pyrophosphate synthase, TcFPPS) is an attractive target for drug development, since the growth of T. cruzi is inhibited by carbocation transition state/reactive intermediate analogs of its substrates, the nitrogen-containing bisphosphonates currently i...
متن کاملNew therapeutic targets for drug design against Trypanosoma cruzi, advances and perspectives.
Chagas disease is one of the most important parasitic diseases in Latin America, affecting 16 to 18 million people. Nifurtimox and Benznidazol are drugs that are commonly used in its treatment; however, these drugs produce several adverse reactions and are not effective in the chronic phase of the disease. Therefore, the design, synthesis, and biological evaluation of new compounds with potenti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proteins
دوره 62 1 شماره
صفحات -
تاریخ انتشار 2006